Fabrication Of Mesoscale Energy Storage Systems By Laser Direct-Write

نویسندگان

  • Craig B. Arnold
  • Ryan C. Wartena
  • Karen E. Swider-Lyons
  • Alberto Piqué
چکیده

Over the last two decades, there has been a trend towards the development of smaller and more autonomous electronic devices, yet the question of how to power these microdevices with correspondingly small power sources remains. To address this problem, we employ a laser forward-transfer process in combination with ultraviolet laser micromachining, to fabricate mesoscale electrochemical power sources, such as microbatteries and micro-ultracapacitors. This direct-write laser-engineering approach enables the deposition of battery materials (hydrous ruthenium oxide, manganese oxide, lithium cobalt oxide, etc.) under ambient temperature and atmospheric conditions, resulting in films with the desired morphological and electrochemical properties. Planar and stacked cell configurations are produced and tested for their energy storage and power delivery capabilities and exhibit favorable performance in comparison to current battery technology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Graphene/MoS2 Nanocomposite for Flexible Energy Storage

In the present work,MoS2 decorated graphene nanocomposite powders were synthesized by laser scribing method.Theobtainedflexible light-scribed graphene/MoS2composites are very suitableas micro-supercapacitors and thus their performance was evaluated at different concentrations.The effect of laser scribing process to reducegraphene oxide (GO) was investigated. The GO/MoS2composite wassynthesized ...

متن کامل

Laser-direct-write methods for fabrication of paper-based medical diagnostic sensors

We demonstrate the use of laser-based direct-write methods, namely laser-induced forward transfer and laser-induced photo-polymerization as printing and patterning tools for the fabrication of paper-based fluidic sensors that enable affordable point-of-care medical diagnostics. OCIS codes: (350.3390) Laser materials processing; (220.4610) Optical fabrication; (280.1415) Biological sensing and s...

متن کامل

Optical absorption enhancement of thin-film amorphous silicon induced by femtosecond laser pulses for solar cell fabrication

In this paper, we present a new method for direct-write laser fabrication of thin-film amorphous silicon (a-Si) on crystalline silicon substrate induced by femtosecond laser irradiation. Using megahertz frequency femtosecond laser pulses makes it possible to control laser fluence in the amorphization range of silicon under ambient condition. Finally, a thin-film of amorphous silicon is generate...

متن کامل

Ultrafast laser written active devices

Direct-write optical waveguide device fabrication is probably the most widely studied application of femtosecond laser micromachining in transparent dielectrics at the present time. Devices such as buried waveguides, power splitters, couplers, gratings, optical amplifiers and laser oscillators have all been demonstrated. This paper reviews the application of the femtosecond laser direct-write t...

متن کامل

New-emerging approach for fabrication of near net shape aluminum matrix composites/nanocomposites: Ultrasonic additive manufacturing

Recently, high-performance lightweight materials with outstanding mechanical properties have opened up their way to some sophisticated industrial applications. As one of these systems, aluminum matrix composites/nanocomposites (AMCs) offer an outstanding combination of relative density, hardness, wear resistance, and mechanical strength. Until now, several additive manufacturing methods have be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003